14 research outputs found

    LodgeNet: an automated framework for precise detection and classification of wheat lodging severity levels in precision farming

    Get PDF
    Wheat lodging is a serious problem affecting grain yield, plant health, and grain quality. Addressing the lodging issue in wheat is a desirable task in breeding programs. Precise detection of lodging levels during wheat screening can aid in selecting lines with resistance to lodging. Traditional approaches to phenotype lodging rely on manual data collection from field plots, which are slow and laborious, and can introduce errors and bias. This paper presents a framework called ‘LodgeNet,’ that facilitates wheat lodging detection. Using Unmanned Aerial Vehicles (UAVs) and Deep Learning (DL), LodgeNet improves traditional methods of detecting lodging with more precision and efficiency. Using a dataset of 2000 multi-spectral images of wheat plots, we have developed a novel image registration technique that aligns the different bands of multi-spectral images. This approach allows the creation of comprehensive RGB images, enhancing the detection and classification of wheat lodging. We have employed advanced image enhancement techniques to improve image quality, highlighting the important features of wheat lodging detection. We combined three color enhancement transformations into two presets for image refinement. The first preset, ‘Haze & Gamma Adjustment,’ minimize atmospheric haze and adjusts the gamma, while the second, ‘Stretching Contrast Limits,’ extends the contrast of the RGB image by calculating and applying the upper and lower limits of each band. LodgeNet, which relies on the state-of-the-art YOLOv8 deep learning algorithm, could detect and classify wheat lodging severity levels ranging from no lodging (Class 1) to severe lodging (Class 9). The results show the mean Average Precision (mAP) of 0.952% @0.5 and 0.641% @0.50-0.95 in classifying wheat lodging severity levels. LodgeNet promises an efficient and automated high-throughput solution for real-time crop monitoring of wheat lodging severity levels in the field

    Carrageenans, sulphated polysaccharides of red seaweeds, differentially affect Arabidopsis thaliana resistance to Trichoplusia ni (cabbage looper).

    Get PDF
    Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral properties. We investigated the effect of foliar application of ι-, κ- and λ-carrageenans (representing various levels of sulphation) on Arabidopsis thaliana in resistance to the generalist insect Trichoplusia ni (cabbage looper) which is known to cause serious economic losses in crop plants. Plants treated with ι- and κ-carrageenan showed reduced leaf damage, whereas those treated with λ- carrageenan were similar to that of the control. In a no-choice test, larval weight was reduced by more than 20% in ι- and κ- carrageenan treatments, but unaffected by λ-carrageenan. In multiple choice tests, carrageenan treated plants attracted fewer T. ni larvae by the fourth day following infestation as compared to the control. The application of carrageenans did not affect oviposition behaviour of T. ni. Growth of T. ni feeding on an artificial diet amended with carrageenans was not different from that fed with untreated control diet. ι-carrageenan induced the expression of defense genes; PR1, PDF1.2, and TI1, but κ- and λ-carrageenans did not. Besides PR1, PDF1.2, and TI1, the indole glucosinolate biosynthesis genes CYP79B2, CYP83B1 and glucosinolate hydrolysing QTL, ESM1 were up-regulated by ι-carrageenan treatment at 48 h post infestation. Gas chromatography-mass spectrometry analysis of carrageenan treated leaves showed increased concentrations of both isothiocyanates and nitriles. Taken together, these results show that carrageenans have differential effects on Arabidopsis resistance to T. ni and that the degree of sulphation of the polysaccharide chain may well mediate this effect

    λ-Carrageenan Suppresses Tomato Chlorotic Dwarf Viroid (TCDVd) Replication and Symptom Expression in Tomatoes

    No full text
    The effect of carrageenans on tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression was studied. Three-week-old tomato plants were spray-treated with iota(ɩ)-, lambda(λ)-, and kappa(κ)-carrageenan at 1 g·L−1 and inoculated with TCDVd after 48 h. The λ-carrageenan significantly suppressed viroid symptom expression after eight weeks of inoculation, only 28% plants showed distinctive bunchy-top symptoms as compared to the 82% in the control group. Viroid concentration was reduced in the infected shoot cuttings incubated in λ-carrageenan amended growth medium. Proteome analysis revealed that 16 tomato proteins were differentially expressed in the λ-carrageenan treated plants. Jasmonic acid related genes, allene oxide synthase (AOS) and lipoxygenase (LOX), were up-regulated in λ-carrageenan treatment during viroid infection. Taken together, our results suggest that λ-carrageenan induced tomato defense against TCDVd, which was partly jasmonic acid (JA) dependent, and that it could be explored in plant protection against viroid infection

    Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation

    Get PDF
    Although rice resistance plays an important role in controlling the brown planthopper (BPH), Nilaparvata lugens, not all varieties have the same level of protection against BPH infestation. Understanding the molecular interactions in rice defense response is an important tool to help to reveal unexplained processes that underlie rice resistance to BPH. A proteomics approach was used to explore how wild type IR64 and near-isogenic rice mutants with gain and loss of resistance to BPH respond during infestation. A total of 65 proteins were found markedly altered in wild type IR64 during BPH infestation. Fifty-two proteins associated with 11 functional categories were identified using mass spectrometry. Protein abundance was less altered at 2 and 14 days after infestation (DAI) (T1, T2, respectively), whereas higher protein levels were observed at 28 DAI (T3). This trend diminished at 34 DAI (T4). Comparative analysis of IR64 with mutants showed 22 proteins that may be potentially associated with rice resistance to the brown planthopper (BPH). Ten proteins were altered in susceptible mutant (D1131) whereas abundance of 12 proteins including S-like RNase, Glyoxalase I, EFTu1 and Salt stress root protein “RS1” was differentially changed in resistant mutant (D518). S-like RNase was found in greater quantities in D518 after BPH infestation but remained unchanged in IR64 and decreased in D1131. Taken together, this study shows a noticeable level of protein abundance in the resistant mutant D518 compared to the susceptible mutant D1131 that may be involved in rendering enhanced level of resistance against BPH

    Liuwei Dihuang (LWDH), a Traditional Chinese Medicinal Formula, Protects against β-Amyloid Toxicity in Transgenic <em>Caenorhabditis elegans</em>

    Get PDF
    <div><p>Liuwei Dihuang (LWDH), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ) induced paralysis in <em>Caenorhabditis elegans</em> using ethanol extract (LWDH-EE) and water extract (LWDH-WE). Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. <em>In vitro</em> studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aβ <em>in vitro</em>. By contrast, LWDH-EE effectively delayed Aβ induced paralysis in the transgenic <em>C. elegans</em> (CL4176) model which expresses human Aβ1–42. Western blot revealed no treatment induced reduction in Aβ accumulation in CL4176 although a significant reduction was observed at an early stage with respect to β-amyloid deposition in <em>C. elegans</em> strain CL2006 which constitutively expresses human Aβ1–42. In addition, LWDH-EE reduced <em>in vivo</em> reactive oxygen species (ROS) in <em>C. elegans</em> (CL4176) that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of <em>amy1</em> in CL4176 while up-regulating <em>hsp16.2</em> induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated β-amyloid induced toxicity, in part, through up-regulation of heat shock protein, antioxidant activity and reduced ROS in <em>C. elegans</em>.</p> </div

    Effect of LWDH on reactive oxygen species (ROS) and Juglone induced oxidative stress tolerance in <i>C. elegans</i>.

    No full text
    <p>A. ROS were measured in LWDH-EE, Egb761 and untreated CL4176 worms using 2,7-dichlorofluorescein diacetate. Results are expressed as DCF (2,7-dichlorofluorescein diacetate) fluorescence relative to the untreated control. EGb761 (1 mg/mL) served as positive control. Data represent mean+SE, **p<0.001. B. Survival assay of N2 under juglone (300 µg/mL) generated oxidative stress. Survival was scored at 1 h interval until all the worms died. All survival curves are based on two independent experiments with 90 worms in each experiment (N = 180, p<0.05). EGb761 (1 mg/mL), quercetin (200 µg/mL) and plain NGM served as controls.</p
    corecore